Обсуждение участника:SAMSON

Материал из roboforum.ru Wiki
Перейти к: навигация, поиск

Оглавление Благодарности Аннотация Глава I. ВВЕДЕНИЕ 1.1 Background 1.2 Purpose and Overview Chapter II. Braided Pneumatic Actuators 2.1 Physical Characteristics 2.2 Geometric and Static Model 2.3 Static Model Verification 2.4 Dynamic Model Chapter III. Simulation 3.1 Simulation Overview 3.2 Equations of Motion 3.3 Valve Model 3.4 Dynamic Model Verification Chapter IV. Robot Hardware 4.1 System Overview 4.2 Leg Design 4.3 Valves 4.4 Force Sensors 4.5 Angle Sensors Chapter V. Control 5.1 Control Architecture and Control Laws 5.2 Control Program 5.3 Inverse Kinematics Chapter VI. Results and Discussion 6.1 Desired Walking Behavior 6.2 Tuning 6.3 Walking Results 6.4 Robot Limitations 6.5 Derivative Control Chapter VII. Conclusion 7.1 It Walks! 7.2 Semi-Observed Speculation 7.3 Future work Appendix A: Simulation Code A.1 Actuator.cpp Appendix B: Controller Code B.1 Control.cpp B.2 Def.h B.3 Hardware.cpp

B.4 Predict.dat B.5 Gain.dat Appendix C: Robot Hardware C.1 Strain Gage Amplifier C.2 Wiring C.3 Mechanical Drawings Bibliography


Список таблиц Table 4.1 : Transducer sensitivity and error Table 6.1 : Joint range of motion Table 6.2 : Time parameters for walking motion Table 6.3 : Walking motion control gains Table 6.4 : Passivity and average duty cycles of each valve



Список иллюстраций Figure 1.1 : Dimensionless force-length properties of actuators and biological muscles Figure 2.1 : Photograph of inflated and uninflated actuators Figure 2.2 : Actuator dimensions Figure 2.3 : Geometric schematic of actuators Figure 2.4 : Mesh geometry Figure 2.5 : Revised actuator geometry schematic Figure 2.6 : Pressure, Length, Force, Stiffness Relationship for a BPA Figure 2.7 : Static model verification schematic Figure 2.8 : Plot of Force vs. Length for a BPA with constant internal mass of air Figure 2.9 : Pressure Increase vs. Length – constant mass system Figure 2.10 : Plot of Force vs. Length – constant air mass – Exp. vs. Theor. results Figure 2.11 : Plot of Effectiveness vs. Pressure Figure 2.12 : Plot of Force vs. Length – Exp. vs. Theor. Results – (effectiveness) Figure 2.13 : Plot of Force vs. Length – Constant Pressure System Figure 2.14 : Dynamic model schematic Figure 3.1 : Simulation overview schematic Figure 3.2 : Detailed simulation schematic Figure 3.3 : Actuator equation of motion schematic Figure 3.4 : Flow curve for Matrix 758 3-way valve Figure 3.5 : Dynamic model verification schematic Figure 3.6 : Length vs. Time – 60 psi constant mass – 6 lb load - measured Figure 3.7 : Length vs. Time – 60 psi constant mass – 6 lb load - simulation Figure 3.8 : Length vs. Time – 80 psi constant mass – 11 lb load - measured Figure 3.9 : Length vs. Time – 80 psi constant mass – 11 lb load - simulation Figure 3.10 : Length vs. Time – 60 psi constant mass – 11 lb load - measured Figure 3.11 : Length vs. Time – 60 psi constant mass – 11 lb load - simulation Figure 3.12 : PWM valve model verification schematic Figure 3.13 : Commanded vs. Actual duty cycles – Matrix 758 3-way valve Figure 3.14 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - measured Figure 3.15 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - simulation Figure 3.16 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - measured Figure 3.17 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - simulation Figure 3.18 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - measured Figure 3.19 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - simulation Figure 3.20 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - measured Figure 3.21 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - simulation Figure 3.22 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - measured Figure 3.23 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - simulation Figure 4.1 : Robot hardware schematic Figure 4.2 : Photograph of robot Figure 4.3 : CAD model and photograph of robot leg Figure 4.4 : CAD model and photograph of hip translational joint Figure 4.5 : CAD model and photograph of hip rotational joint Figure 4.6 : Schematic of inlet valve Figure 4.7 : Schematic of exhaust valve Figure 4.8 : Current vs. time for inlet valve Figure 4.9 : Current vs. time for exhaust valve Figure 4.10 : Force sensor classic analysis schematic Figure 4.11 : Force sensor FEA results Figure 4.12 : Photograph of force sensors Figure 4.13 : Photograph of strain gage amplifier Figure 4.14 : Transducer calibration plot Figure 4.15 : Photograph of completed force measurement system Figure 4.16 : Photograph of completed angle measurement systems Figure 5.1 : Labeled schematic of a joint Figure 5.2 : Block diagram of the control algorithm Figure 5.3 : ISR schematic Figure 5.4 : Inverse kinematics schematic Figure 6.1 : Desired foot positions for walking motion Figure 6.2 : Sequential video frames of the leg during walking motion Figure 6.3 : Desired and actual x-y foot paths: Test 1 Figure 6.4 : Desired and actual joint angles vs. time: Test 1 Figure 6.5 : Actuator force vs. time Figure 6.6 : Desired and actual joint stiffness vs. time Figure 6.7 : Joint torque vs. time Figure 6.8 : Ground reaction forces during walking vs. time Figure 6.9 : Trolley motion vs. time Figure 6.10 : Hip joint valve duty cycles vs. time Figure 6.11 : Knee joint valve duty cycles vs. time Figure 6.12 : Desired and actual joint angles vs. time: Test 2 Figure 6.13 : Desired and actual x-y foot paths: Kicking motion Figure 6.14 : Desired and actual joint angles vs. time: Kicking motion Figure 6.15 : Calculated angular velocity vs. time Figure 6.14 : Desired and actual joint angles vs. time: Derivative control Figure 7.1 : Desired and actual x-y foot paths: Angle feedback only