Обсуждение участника:SAMSON — различия между версиями

Материал из roboforum.ru Wiki
Перейти к: навигация, поиск
(ПЕРЕВОДИМ (DESIGN AND CONTROL OF A ROBOTIC LEG WITH BRAIDED PNEUMATIC ACTUATORS): Новая тема)
Строка 1: Строка 1:
 
Оглавление
 
Оглавление
 +
 
Благодарности
 
Благодарности
Аннотация  
+
 
 +
Аннотация
 +
 
Глава I. ВВЕДЕНИЕ  
 
Глава I. ВВЕДЕНИЕ  
 
+
:1.1 Background  
1.1 Background  
+
:1.2 Purpose and Overview  
 
 
1.2 Purpose and Overview  
 
  
 
Chapter II. Braided Pneumatic Actuators   
 
Chapter II. Braided Pneumatic Actuators   
 +
:2.1 Physical Characteristics
 +
:2.2 Geometric and Static Model
 +
:2.3 Static Model Verification
 +
:2.4 Dynamic Model
  
2.1 Physical Characteristics
+
Chapter III. Simulation
 +
:3.1 Simulation Overview
 +
:3.2 Equations of Motion
 +
:3.3 Valve Model
 +
:3.4 Dynamic Model Verification
  
2.2 Geometric and Static Model
+
Chapter IV. Robot Hardware
 +
:4.1 System Overview
 +
:4.2 Leg Design
 +
:4.3 Valves
 +
:4.4 Force Sensors
 +
:4.5 Angle Sensors
  
2.3 Static Model Verification
+
Chapter V. Control
 +
:5.1 Control Architecture and Control Laws
 +
:5.2 Control Program
 +
:5.3 Inverse Kinematics
  
2.4 Dynamic Model
 
Chapter III. Simulation
 
3.1 Simulation Overview
 
3.2 Equations of Motion
 
3.3 Valve Model
 
3.4 Dynamic Model Verification
 
Chapter IV. Robot Hardware
 
4.1 System Overview
 
4.2 Leg Design
 
4.3 Valves
 
4.4 Force Sensors
 
4.5 Angle Sensors
 
Chapter V. Control
 
5.1 Control Architecture and Control Laws
 
5.2 Control Program
 
5.3 Inverse Kinematics
 
 
Chapter VI. Results and Discussion
 
Chapter VI. Results and Discussion
6.1 Desired Walking Behavior
+
:6.1 Desired Walking Behavior
6.2 Tuning  
+
:6.2 Tuning  
6.3 Walking Results  
+
:6.3 Walking Results  
6.4 Robot Limitations
+
:6.4 Robot Limitations
6.5 Derivative Control
+
:6.5 Derivative Control
 +
 
 
Chapter VII. Conclusion  
 
Chapter VII. Conclusion  
7.1 It Walks!
+
:7.1 It Walks!
7.2 Semi-Observed Speculation
+
:7.2 Semi-Observed Speculation
7.3 Future work  
+
:7.3 Future work  
 +
 
 +
----
 +
 
 
Appendix A: Simulation Code  
 
Appendix A: Simulation Code  
A.1 Actuator.cpp  
+
:A.1 Actuator.cpp  
 +
 
 
Appendix B: Controller Code  
 
Appendix B: Controller Code  
B.1 Control.cpp  
+
:B.1 Control.cpp  
B.2 Def.h
+
:B.2 Def.h
B.3 Hardware.cpp
+
:B.3 Hardware.cpp
+
:B.4 Predict.dat
B.4 Predict.dat
+
:B.5 Gain.dat
B.5 Gain.dat
+
 
 
Appendix C: Robot Hardware
 
Appendix C: Robot Hardware
C.1 Strain Gage Amplifier  
+
:C.1 Strain Gage Amplifier  
C.2 Wiring
+
:C.2 Wiring
C.3 Mechanical Drawings
+
:C.3 Mechanical Drawings
 +
 
 
Bibliography
 
Bibliography
  
Строка 60: Строка 67:
  
 
'''Список таблиц'''
 
'''Список таблиц'''
Table 4.1 : Transducer sensitivity and error
+
 
Table 6.1 : Joint range of motion  
+
:Table 4.1 : Transducer sensitivity and error
Table 6.2 : Time parameters for walking motion
+
:Table 6.1 : Joint range of motion  
Table 6.3 : Walking motion control gains
+
:Table 6.2 : Time parameters for walking motion
Table 6.4 : Passivity and average duty cycles of each valve
+
:Table 6.3 : Walking motion control gains
 +
:Table 6.4 : Passivity and average duty cycles of each valve
  
 
----
 
----
  
 +
'''Список иллюстраций'''
 +
:Figure 1.1 : Dimensionless force-length properties of actuators and biological muscles
 +
:Figure 2.1 : Photograph of inflated and uninflated actuators
 +
:Figure 2.2 : Actuator dimensions
 +
:Figure 2.3 : Geometric schematic of actuators
 +
:Figure 2.4 : Mesh geometry
 +
:Figure 2.5 : Revised actuator geometry schematic
 +
:Figure 2.6 : Pressure, Length, Force, Stiffness Relationship for a BPA
 +
:Figure 2.7 : Static model verification schematic
 +
:Figure 2.8 : Plot of Force vs. Length for a BPA with constant internal mass of air
 +
:Figure 2.9 : Pressure Increase vs. Length – constant mass system
 +
:Figure 2.10 : Plot of Force vs. Length – constant air mass – Exp. vs. Theor. results
 +
:Figure 2.11 : Plot of Effectiveness vs. Pressure
 +
:Figure 2.12 : Plot of Force vs. Length – Exp. vs. Theor. Results – (effectiveness)
 +
:Figure 2.13 : Plot of Force vs. Length – Constant Pressure System
 +
:Figure 2.14 : Dynamic model schematic
 +
:Figure 3.1 : Simulation overview schematic
 +
:Figure 3.2 : Detailed simulation schematic
 +
:Figure 3.3 : Actuator equation of motion schematic
 +
:Figure 3.4 : Flow curve for Matrix 758 3-way valve
 +
:Figure 3.5 : Dynamic model verification schematic
 +
:Figure 3.6 : Length vs. Time – 60 psi constant mass – 6 lb load - measured
 +
:Figure 3.7 : Length vs. Time – 60 psi constant mass – 6 lb load - simulation
 +
:Figure 3.8 : Length vs. Time – 80 psi constant mass – 11 lb load - measured
 +
:Figure 3.9 : Length vs. Time – 80 psi constant mass – 11 lb load - simulation
 +
:Figure 3.10 : Length vs. Time – 60 psi constant mass – 11 lb load - measured
 +
:Figure 3.11 : Length vs. Time – 60 psi constant mass – 11 lb load - simulation
 +
:Figure 3.12 : PWM valve model verification schematic
 +
:Figure 3.13 : Commanded vs. Actual duty cycles – Matrix 758 3-way valve
 +
:Figure 3.14 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - measured
 +
:Figure 3.15 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - simulation
 +
:Figure 3.16 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - measured
 +
:Figure 3.17 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - simulation
 +
:Figure 3.18 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - measured
 +
:Figure 3.19 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - simulation
 +
:Figure 3.20 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - measured
 +
:Figure 3.21 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - simulation
 +
:Figure 3.22 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - measured
 +
:Figure 3.23 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - simulation
 +
:Figure 4.1 : Robot hardware schematic
 +
:Figure 4.2 : Photograph of robot
 +
:Figure 4.3 : CAD model and photograph of robot leg
 +
:Figure 4.4 : CAD model and photograph of hip translational joint
 +
:Figure 4.5 : CAD model and photograph of hip rotational joint
 +
:Figure 4.6 : Schematic of inlet valve
 +
:Figure 4.7 : Schematic of exhaust valve
 +
:Figure 4.8 : Current vs. time for inlet valve
 +
:Figure 4.9 : Current vs. time for exhaust valve
 +
:Figure 4.10 : Force sensor classic analysis schematic
 +
:Figure 4.11 : Force sensor FEA results
 +
:Figure 4.12 : Photograph of force sensors
 +
:Figure 4.13 : Photograph of strain gage amplifier
 +
:Figure 4.14 : Transducer calibration plot
 +
:Figure 4.15 : Photograph of completed force measurement system
 +
:Figure 4.16 : Photograph of completed angle measurement systems
 +
:Figure 5.1 : Labeled schematic of a joint
 +
:Figure 5.2 : Block diagram of the control algorithm
 +
:Figure 5.3 : ISR schematic
 +
:Figure 5.4 : Inverse kinematics schematic
 +
:Figure 6.1 : Desired foot positions for walking motion
 +
:Figure 6.2 : Sequential video frames of the leg during walking motion
 +
:Figure 6.3 : Desired and actual x-y foot paths: Test 1
 +
:Figure 6.4 : Desired and actual joint angles vs. time: Test 1
 +
:Figure 6.5 : Actuator force vs. time
 +
:Figure 6.6 : Desired and actual joint stiffness vs. time
 +
:Figure 6.7 : Joint torque vs. time
 +
:Figure 6.8 : Ground reaction forces during walking vs. time
 +
:Figure 6.9 : Trolley motion vs. time
 +
:Figure 6.10 : Hip joint valve duty cycles vs. time
 +
:Figure 6.11 : Knee joint valve duty cycles vs. time
 +
:Figure 6.12 : Desired and actual joint angles vs. time: Test 2
 +
:Figure 6.13 : Desired and actual x-y foot paths: Kicking motion
 +
:Figure 6.14 : Desired and actual joint angles vs. time: Kicking motion
 +
:Figure 6.15 : Calculated angular velocity vs. time
 +
:Figure 6.14 : Desired and actual joint angles vs. time: Derivative control
 +
:Figure 7.1 : Desired and actual x-y foot paths: Angle feedback only
 +
 +
----
  
'''Список иллюстраций'''
+
'''Литература'''
Figure 1.1 : Dimensionless force-length properties of actuators and biological muscles
 
Figure 2.1 : Photograph of inflated and uninflated actuators
 
Figure 2.2 : Actuator dimensions
 
Figure 2.3 : Geometric schematic of actuators
 
Figure 2.4 : Mesh geometry
 
Figure 2.5 : Revised actuator geometry schematic
 
Figure 2.6 : Pressure, Length, Force, Stiffness Relationship for a BPA
 
Figure 2.7 : Static model verification schematic
 
Figure 2.8 : Plot of Force vs. Length for a BPA with constant internal mass of air
 
Figure 2.9 : Pressure Increase vs. Length – constant mass system
 
Figure 2.10 : Plot of Force vs. Length – constant air mass – Exp. vs. Theor. results
 
Figure 2.11 : Plot of Effectiveness vs. Pressure
 
Figure 2.12 : Plot of Force vs. Length – Exp. vs. Theor. Results – (effectiveness)
 
Figure 2.13 : Plot of Force vs. Length – Constant Pressure System
 
Figure 2.14 : Dynamic model schematic
 
Figure 3.1 : Simulation overview schematic
 
Figure 3.2 : Detailed simulation schematic
 
Figure 3.3 : Actuator equation of motion schematic
 
Figure 3.4 : Flow curve for Matrix 758 3-way valve
 
Figure 3.5 : Dynamic model verification schematic
 
Figure 3.6 : Length vs. Time – 60 psi constant mass – 6 lb load - measured
 
Figure 3.7 : Length vs. Time – 60 psi constant mass – 6 lb load - simulation
 
Figure 3.8 : Length vs. Time – 80 psi constant mass – 11 lb load - measured
 
Figure 3.9 : Length vs. Time – 80 psi constant mass – 11 lb load - simulation
 
Figure 3.10 : Length vs. Time – 60 psi constant mass – 11 lb load - measured
 
Figure 3.11 : Length vs. Time – 60 psi constant mass – 11 lb load - simulation
 
Figure 3.12 : PWM valve model verification schematic
 
Figure 3.13 : Commanded vs. Actual duty cycles – Matrix 758 3-way valve
 
Figure 3.14 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - measured
 
Figure 3.15 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - simulation
 
Figure 3.16 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - measured
 
Figure 3.17 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - simulation
 
Figure 3.18 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - measured
 
Figure 3.19 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - simulation
 
Figure 3.20 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - measured
 
Figure 3.21 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - simulation
 
Figure 3.22 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - measured
 
Figure 3.23 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - simulation
 
Figure 4.1 : Robot hardware schematic
 
Figure 4.2 : Photograph of robot
 
Figure 4.3 : CAD model and photograph of robot leg
 
Figure 4.4 : CAD model and photograph of hip translational joint
 
Figure 4.5 : CAD model and photograph of hip rotational joint
 
Figure 4.6 : Schematic of inlet valve
 
Figure 4.7 : Schematic of exhaust valve
 
Figure 4.8 : Current vs. time for inlet valve
 
Figure 4.9 : Current vs. time for exhaust valve
 
Figure 4.10 : Force sensor classic analysis schematic
 
Figure 4.11 : Force sensor FEA results
 
Figure 4.12 : Photograph of force sensors
 
Figure 4.13 : Photograph of strain gage amplifier
 
Figure 4.14 : Transducer calibration plot
 
Figure 4.15 : Photograph of completed force measurement system
 
Figure 4.16 : Photograph of completed angle measurement systems
 
Figure 5.1 : Labeled schematic of a joint
 
Figure 5.2 : Block diagram of the control algorithm
 
Figure 5.3 : ISR schematic
 
Figure 5.4 : Inverse kinematics schematic
 
Figure 6.1 : Desired foot positions for walking motion
 
Figure 6.2 : Sequential video frames of the leg during walking motion
 
Figure 6.3 : Desired and actual x-y foot paths: Test 1
 
Figure 6.4 : Desired and actual joint angles vs. time: Test 1
 
Figure 6.5 : Actuator force vs. time
 
Figure 6.6 : Desired and actual joint stiffness vs. time
 
Figure 6.7 : Joint torque vs. time
 
Figure 6.8 : Ground reaction forces during walking vs. time
 
Figure 6.9 : Trolley motion vs. time
 
Figure 6.10 : Hip joint valve duty cycles vs. time
 
Figure 6.11 : Knee joint valve duty cycles vs. time
 
Figure 6.12 : Desired and actual joint angles vs. time: Test 2
 
Figure 6.13 : Desired and actual x-y foot paths: Kicking motion
 
Figure 6.14 : Desired and actual joint angles vs. time: Kicking motion
 
Figure 6.15 : Calculated angular velocity vs. time
 
Figure 6.14 : Desired and actual joint angles vs. time: Derivative control
 
Figure 7.1 : Desired and actual x-y foot paths: Angle feedback only
 
  
 
== ПЕРЕВОДИМ (DESIGN AND CONTROL OF A ROBOTIC LEG WITH BRAIDED PNEUMATIC ACTUATORS) ==
 
== ПЕРЕВОДИМ (DESIGN AND CONTROL OF A ROBOTIC LEG WITH BRAIDED PNEUMATIC ACTUATORS) ==

Версия 16:35, 27 апреля 2009

Оглавление

Благодарности

Аннотация

Глава I. ВВЕДЕНИЕ

1.1 Background
1.2 Purpose and Overview

Chapter II. Braided Pneumatic Actuators

2.1 Physical Characteristics
2.2 Geometric and Static Model
2.3 Static Model Verification
2.4 Dynamic Model

Chapter III. Simulation

3.1 Simulation Overview
3.2 Equations of Motion
3.3 Valve Model
3.4 Dynamic Model Verification

Chapter IV. Robot Hardware

4.1 System Overview
4.2 Leg Design
4.3 Valves
4.4 Force Sensors
4.5 Angle Sensors

Chapter V. Control

5.1 Control Architecture and Control Laws
5.2 Control Program
5.3 Inverse Kinematics

Chapter VI. Results and Discussion

6.1 Desired Walking Behavior
6.2 Tuning
6.3 Walking Results
6.4 Robot Limitations
6.5 Derivative Control

Chapter VII. Conclusion

7.1 It Walks!
7.2 Semi-Observed Speculation
7.3 Future work

Appendix A: Simulation Code

A.1 Actuator.cpp

Appendix B: Controller Code

B.1 Control.cpp
B.2 Def.h
B.3 Hardware.cpp
B.4 Predict.dat
B.5 Gain.dat

Appendix C: Robot Hardware

C.1 Strain Gage Amplifier
C.2 Wiring
C.3 Mechanical Drawings

Bibliography


Список таблиц

Table 4.1 : Transducer sensitivity and error
Table 6.1 : Joint range of motion
Table 6.2 : Time parameters for walking motion
Table 6.3 : Walking motion control gains
Table 6.4 : Passivity and average duty cycles of each valve

Список иллюстраций

Figure 1.1 : Dimensionless force-length properties of actuators and biological muscles
Figure 2.1 : Photograph of inflated and uninflated actuators
Figure 2.2 : Actuator dimensions
Figure 2.3 : Geometric schematic of actuators
Figure 2.4 : Mesh geometry
Figure 2.5 : Revised actuator geometry schematic
Figure 2.6 : Pressure, Length, Force, Stiffness Relationship for a BPA
Figure 2.7 : Static model verification schematic
Figure 2.8 : Plot of Force vs. Length for a BPA with constant internal mass of air
Figure 2.9 : Pressure Increase vs. Length – constant mass system
Figure 2.10 : Plot of Force vs. Length – constant air mass – Exp. vs. Theor. results
Figure 2.11 : Plot of Effectiveness vs. Pressure
Figure 2.12 : Plot of Force vs. Length – Exp. vs. Theor. Results – (effectiveness)
Figure 2.13 : Plot of Force vs. Length – Constant Pressure System
Figure 2.14 : Dynamic model schematic
Figure 3.1 : Simulation overview schematic
Figure 3.2 : Detailed simulation schematic
Figure 3.3 : Actuator equation of motion schematic
Figure 3.4 : Flow curve for Matrix 758 3-way valve
Figure 3.5 : Dynamic model verification schematic
Figure 3.6 : Length vs. Time – 60 psi constant mass – 6 lb load - measured
Figure 3.7 : Length vs. Time – 60 psi constant mass – 6 lb load - simulation
Figure 3.8 : Length vs. Time – 80 psi constant mass – 11 lb load - measured
Figure 3.9 : Length vs. Time – 80 psi constant mass – 11 lb load - simulation
Figure 3.10 : Length vs. Time – 60 psi constant mass – 11 lb load - measured
Figure 3.11 : Length vs. Time – 60 psi constant mass – 11 lb load - simulation
Figure 3.12 : PWM valve model verification schematic
Figure 3.13 : Commanded vs. Actual duty cycles – Matrix 758 3-way valve
Figure 3.14 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - measured
Figure 3.15 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - simulation
Figure 3.16 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - measured
Figure 3.17 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - simulation
Figure 3.18 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - measured
Figure 3.19 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - simulation
Figure 3.20 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - measured
Figure 3.21 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - simulation
Figure 3.22 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - measured
Figure 3.23 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - simulation
Figure 4.1 : Robot hardware schematic
Figure 4.2 : Photograph of robot
Figure 4.3 : CAD model and photograph of robot leg
Figure 4.4 : CAD model and photograph of hip translational joint
Figure 4.5 : CAD model and photograph of hip rotational joint
Figure 4.6 : Schematic of inlet valve
Figure 4.7 : Schematic of exhaust valve
Figure 4.8 : Current vs. time for inlet valve
Figure 4.9 : Current vs. time for exhaust valve
Figure 4.10 : Force sensor classic analysis schematic
Figure 4.11 : Force sensor FEA results
Figure 4.12 : Photograph of force sensors
Figure 4.13 : Photograph of strain gage amplifier
Figure 4.14 : Transducer calibration plot
Figure 4.15 : Photograph of completed force measurement system
Figure 4.16 : Photograph of completed angle measurement systems
Figure 5.1 : Labeled schematic of a joint
Figure 5.2 : Block diagram of the control algorithm
Figure 5.3 : ISR schematic
Figure 5.4 : Inverse kinematics schematic
Figure 6.1 : Desired foot positions for walking motion
Figure 6.2 : Sequential video frames of the leg during walking motion
Figure 6.3 : Desired and actual x-y foot paths: Test 1
Figure 6.4 : Desired and actual joint angles vs. time: Test 1
Figure 6.5 : Actuator force vs. time
Figure 6.6 : Desired and actual joint stiffness vs. time
Figure 6.7 : Joint torque vs. time
Figure 6.8 : Ground reaction forces during walking vs. time
Figure 6.9 : Trolley motion vs. time
Figure 6.10 : Hip joint valve duty cycles vs. time
Figure 6.11 : Knee joint valve duty cycles vs. time
Figure 6.12 : Desired and actual joint angles vs. time: Test 2
Figure 6.13 : Desired and actual x-y foot paths: Kicking motion
Figure 6.14 : Desired and actual joint angles vs. time: Kicking motion
Figure 6.15 : Calculated angular velocity vs. time
Figure 6.14 : Desired and actual joint angles vs. time: Derivative control
Figure 7.1 : Desired and actual x-y foot paths: Angle feedback only

Литература

ПЕРЕВОДИМ (DESIGN AND CONTROL OF A ROBOTIC LEG WITH BRAIDED PNEUMATIC ACTUATORS)

Оглавление Благодарности Аннотация Глава I. ВВЕДЕНИЕ

1.1 Background

1.2 Purpose and Overview

Chapter II. Braided Pneumatic Actuators

2.1 Physical Characteristics

2.2 Geometric and Static Model

2.3 Static Model Verification

2.4 Dynamic Model Chapter III. Simulation 3.1 Simulation Overview 3.2 Equations of Motion 3.3 Valve Model 3.4 Dynamic Model Verification Chapter IV. Robot Hardware 4.1 System Overview 4.2 Leg Design 4.3 Valves 4.4 Force Sensors 4.5 Angle Sensors Chapter V. Control 5.1 Control Architecture and Control Laws 5.2 Control Program 5.3 Inverse Kinematics Chapter VI. Results and Discussion 6.1 Desired Walking Behavior 6.2 Tuning 6.3 Walking Results 6.4 Robot Limitations 6.5 Derivative Control Chapter VII. Conclusion 7.1 It Walks! 7.2 Semi-Observed Speculation 7.3 Future work Appendix A: Simulation Code A.1 Actuator.cpp Appendix B: Controller Code B.1 Control.cpp B.2 Def.h B.3 Hardware.cpp

B.4 Predict.dat B.5 Gain.dat Appendix C: Robot Hardware C.1 Strain Gage Amplifier C.2 Wiring C.3 Mechanical Drawings Bibliography


Список таблиц Table 4.1 : Transducer sensitivity and error Table 6.1 : Joint range of motion Table 6.2 : Time parameters for walking motion Table 6.3 : Walking motion control gains Table 6.4 : Passivity and average duty cycles of each valve



Список иллюстраций Figure 1.1 : Dimensionless force-length properties of actuators and biological muscles Figure 2.1 : Photograph of inflated and uninflated actuators Figure 2.2 : Actuator dimensions Figure 2.3 : Geometric schematic of actuators Figure 2.4 : Mesh geometry Figure 2.5 : Revised actuator geometry schematic Figure 2.6 : Pressure, Length, Force, Stiffness Relationship for a BPA Figure 2.7 : Static model verification schematic Figure 2.8 : Plot of Force vs. Length for a BPA with constant internal mass of air Figure 2.9 : Pressure Increase vs. Length – constant mass system Figure 2.10 : Plot of Force vs. Length – constant air mass – Exp. vs. Theor. results Figure 2.11 : Plot of Effectiveness vs. Pressure Figure 2.12 : Plot of Force vs. Length – Exp. vs. Theor. Results – (effectiveness) Figure 2.13 : Plot of Force vs. Length – Constant Pressure System Figure 2.14 : Dynamic model schematic Figure 3.1 : Simulation overview schematic Figure 3.2 : Detailed simulation schematic Figure 3.3 : Actuator equation of motion schematic Figure 3.4 : Flow curve for Matrix 758 3-way valve Figure 3.5 : Dynamic model verification schematic Figure 3.6 : Length vs. Time – 60 psi constant mass – 6 lb load - measured Figure 3.7 : Length vs. Time – 60 psi constant mass – 6 lb load - simulation Figure 3.8 : Length vs. Time – 80 psi constant mass – 11 lb load - measured Figure 3.9 : Length vs. Time – 80 psi constant mass – 11 lb load - simulation Figure 3.10 : Length vs. Time – 60 psi constant mass – 11 lb load - measured Figure 3.11 : Length vs. Time – 60 psi constant mass – 11 lb load - simulation Figure 3.12 : PWM valve model verification schematic Figure 3.13 : Commanded vs. Actual duty cycles – Matrix 758 3-way valve Figure 3.14 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - measured Figure 3.15 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - simulation Figure 3.16 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - measured Figure 3.17 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - simulation Figure 3.18 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - measured Figure 3.19 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - simulation Figure 3.20 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - measured Figure 3.21 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - simulation Figure 3.22 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - measured Figure 3.23 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - simulation Figure 4.1 : Robot hardware schematic Figure 4.2 : Photograph of robot Figure 4.3 : CAD model and photograph of robot leg Figure 4.4 : CAD model and photograph of hip translational joint Figure 4.5 : CAD model and photograph of hip rotational joint Figure 4.6 : Schematic of inlet valve Figure 4.7 : Schematic of exhaust valve Figure 4.8 : Current vs. time for inlet valve Figure 4.9 : Current vs. time for exhaust valve Figure 4.10 : Force sensor classic analysis schematic Figure 4.11 : Force sensor FEA results Figure 4.12 : Photograph of force sensors Figure 4.13 : Photograph of strain gage amplifier Figure 4.14 : Transducer calibration plot Figure 4.15 : Photograph of completed force measurement system Figure 4.16 : Photograph of completed angle measurement systems Figure 5.1 : Labeled schematic of a joint Figure 5.2 : Block diagram of the control algorithm Figure 5.3 : ISR schematic Figure 5.4 : Inverse kinematics schematic Figure 6.1 : Desired foot positions for walking motion Figure 6.2 : Sequential video frames of the leg during walking motion Figure 6.3 : Desired and actual x-y foot paths: Test 1 Figure 6.4 : Desired and actual joint angles vs. time: Test 1 Figure 6.5 : Actuator force vs. time Figure 6.6 : Desired and actual joint stiffness vs. time Figure 6.7 : Joint torque vs. time Figure 6.8 : Ground reaction forces during walking vs. time Figure 6.9 : Trolley motion vs. time Figure 6.10 : Hip joint valve duty cycles vs. time Figure 6.11 : Knee joint valve duty cycles vs. time Figure 6.12 : Desired and actual joint angles vs. time: Test 2 Figure 6.13 : Desired and actual x-y foot paths: Kicking motion Figure 6.14 : Desired and actual joint angles vs. time: Kicking motion Figure 6.15 : Calculated angular velocity vs. time Figure 6.14 : Desired and actual joint angles vs. time: Derivative control Figure 7.1 : Desired and actual x-y foot paths: Angle feedback only