Обсуждение участника:SAMSON — различия между версиями

Материал из roboforum.ru Wiki
Перейти к: навигация, поиск
(ПЕРЕВОДИМ (DESIGN AND CONTROL OF A ROBOTIC LEG WITH BRAIDED PNEUMATIC ACTUATORS))
Строка 160: Строка 160:
  
 
Оглавление
 
Оглавление
 +
 
Благодарности
 
Благодарности
Аннотация  
+
 
 +
Аннотация
 +
 
Глава I. ВВЕДЕНИЕ  
 
Глава I. ВВЕДЕНИЕ  
 +
:1.1 Background
 +
:1.2 Purpose and Overview
 +
 +
Глава II. Braided Pneumatic Actuators 
 +
:2.1 Physical Characteristics
 +
:2.2 Geometric and Static Model
 +
:2.3 Static Model Verification
 +
:2.4 Dynamic Model
 +
 +
Глава III. Simulation
 +
:3.1 Simulation Overview
 +
:3.2 Equations of Motion
 +
:3.3 Valve Model
 +
:3.4 Dynamic Model Verification
 +
 +
Глава IV. Robot Hardware
 +
:4.1 System Overview
 +
:4.2 Leg Design
 +
:4.3 Valves
 +
:4.4 Force Sensors
 +
:4.5 Angle Sensors
  
1.1 Background
+
Глава V. Control
 +
:5.1 Control Architecture and Control Laws
 +
:5.2 Control Program
 +
:5.3 Inverse Kinematics
  
1.2 Purpose and Overview
+
Глава VI. Results and Discussion
 +
:6.1 Desired Walking Behavior
 +
:6.2 Tuning
 +
:6.3 Walking Results
 +
:6.4 Robot Limitations
 +
:6.5 Derivative Control
  
Chapter II. Braided Pneumatic Actuators 
+
Глава VII. Conclusion
 +
:7.1 It Walks!
 +
:7.2 Semi-Observed Speculation
 +
:7.3 Future work
  
2.1 Physical Characteristics
+
----
  
2.2 Geometric and Static Model
+
Приложение A: Simulation Code
 +
:A.1 Actuator.cpp
  
2.3 Static Model Verification
+
Приложение B: Controller Code
 +
:B.1 Control.cpp
 +
:B.2 Def.h
 +
:B.3 Hardware.cpp
 +
:B.4 Predict.dat
 +
:B.5 Gain.dat
  
2.4 Dynamic Model
+
Приложение C: Robot Hardware
Chapter III. Simulation
+
:C.1 Strain Gage Amplifier  
3.1 Simulation Overview
+
:C.2 Wiring
3.2 Equations of Motion
+
:C.3 Mechanical Drawings
3.3 Valve Model
 
3.4 Dynamic Model Verification
 
Chapter IV. Robot Hardware
 
4.1 System Overview
 
4.2 Leg Design
 
4.3 Valves
 
4.4 Force Sensors
 
4.5 Angle Sensors
 
Chapter V. Control
 
5.1 Control Architecture and Control Laws
 
5.2 Control Program
 
5.3 Inverse Kinematics
 
Chapter VI. Results and Discussion
 
6.1 Desired Walking Behavior
 
6.2 Tuning
 
6.3 Walking Results
 
6.4 Robot Limitations
 
6.5 Derivative Control
 
Chapter VII. Conclusion
 
7.1 It Walks!
 
7.2 Semi-Observed Speculation
 
7.3 Future work
 
Appendix A: Simulation Code
 
A.1 Actuator.cpp
 
Appendix B: Controller Code
 
B.1 Control.cpp
 
B.2 Def.h
 
B.3 Hardware.cpp
 
 
B.4 Predict.dat
 
B.5 Gain.dat
 
Appendix C: Robot Hardware
 
C.1 Strain Gage Amplifier  
 
C.2 Wiring
 
C.3 Mechanical Drawings
 
Bibliography
 
  
 +
'''Литература'''
 
----
 
----
  
 
'''Список таблиц'''
 
'''Список таблиц'''
Table 4.1 : Transducer sensitivity and error
+
 
Table 6.1 : Joint range of motion  
+
:Таблица 4.1 : Transducer sensitivity and error
Table 6.2 : Time parameters for walking motion
+
:Таблица 6.1 : Joint range of motion  
Table 6.3 : Walking motion control gains
+
:Таблица 6.2 : Time parameters for walking motion
Table 6.4 : Passivity and average duty cycles of each valve
+
:Таблица 6.3 : Walking motion control gains
 +
:Таблица 6.4 : Passivity and average duty cycles of each valve
  
 
----
 
----
  
 +
'''Список иллюстраций'''
 +
:Иллюстрация 1.1 : Dimensionless force-length properties of actuators and biological muscles
 +
:Иллюстрация 2.1 : Photograph of inflated and uninflated actuators
 +
:Иллюстрация 2.2 : Actuator dimensions
 +
:Иллюстрация 2.3 : Geometric schematic of actuators
 +
:Иллюстрация 2.4 : Mesh geometry
 +
:Иллюстрация 2.5 : Revised actuator geometry schematic
 +
:Иллюстрация 2.6 : Pressure, Length, Force, Stiffness Relationship for a BPA
 +
:Иллюстрация 2.7 : Static model verification schematic
 +
:Иллюстрация 2.8 : Plot of Force vs. Length for a BPA with constant internal mass of air
 +
:Иллюстрация 2.9 : Pressure Increase vs. Length – constant mass system
 +
:Иллюстрация 2.10 : Plot of Force vs. Length – constant air mass – Exp. vs. Theor. results
 +
:Иллюстрация 2.11 : Plot of Effectiveness vs. Pressure
 +
:Иллюстрация 2.12 : Plot of Force vs. Length – Exp. vs. Theor. Results – (effectiveness)
 +
:Иллюстрация 2.13 : Plot of Force vs. Length – Constant Pressure System
 +
:Иллюстрация 2.14 : Dynamic model schematic
 +
:Иллюстрация 3.1 : Simulation overview schematic
 +
:Иллюстрация 3.2 : Detailed simulation schematic
 +
:Иллюстрация 3.3 : Actuator equation of motion schematic
 +
:Иллюстрация 3.4 : Flow curve for Matrix 758 3-way valve
 +
:Иллюстрация 3.5 : Dynamic model verification schematic
 +
:Иллюстрация 3.6 : Length vs. Time – 60 psi constant mass – 6 lb load - measured
 +
:Иллюстрация 3.7 : Length vs. Time – 60 psi constant mass – 6 lb load - simulation
 +
:Иллюстрация 3.8 : Length vs. Time – 80 psi constant mass – 11 lb load - measured
 +
:Иллюстрация 3.9 : Length vs. Time – 80 psi constant mass – 11 lb load - simulation
 +
:Иллюстрация 3.10 : Length vs. Time – 60 psi constant mass – 11 lb load - measured
 +
:Иллюстрация 3.11 : Length vs. Time – 60 psi constant mass – 11 lb load - simulation
 +
:Иллюстрация 3.12 : PWM valve model verification schematic
 +
:Иллюстрация 3.13 : Commanded vs. Actual duty cycles – Matrix 758 3-way valve
 +
:Иллюстрация 3.14 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - measured
 +
:Иллюстрация 3.15 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - simulation
 +
:Иллюстрация 3.16 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - measured
 +
:Иллюстрация 3.17 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - simulation
 +
:Иллюстрация 3.18 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - measured
 +
:Иллюстрация 3.19 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - simulation
 +
:Иллюстрация 3.20 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - measured
 +
:Иллюстрация 3.21 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - simulation
 +
:Иллюстрация 3.22 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - measured
 +
:Иллюстрация 3.23 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - simulation
 +
:Иллюстрация 4.1 : Robot hardware schematic
 +
:Иллюстрация 4.2 : Photograph of robot
 +
:Иллюстрация 4.3 : CAD model and photograph of robot leg
 +
:Иллюстрация 4.4 : CAD model and photograph of hip translational joint
 +
:Иллюстрация 4.5 : CAD model and photograph of hip rotational joint
 +
:Иллюстрация 4.6 : Schematic of inlet valve
 +
:Иллюстрация 4.7 : Schematic of exhaust valve
 +
:Иллюстрация 4.8 : Current vs. time for inlet valve
 +
:Иллюстрация 4.9 : Current vs. time for exhaust valve
 +
:Иллюстрация 4.10 : Force sensor classic analysis schematic
 +
:Иллюстрация 4.11 : Force sensor FEA results
 +
:Иллюстрация 4.12 : Photograph of force sensors
 +
:Иллюстрация 4.13 : Photograph of strain gage amplifier
 +
:Иллюстрация 4.14 : Transducer calibration plot
 +
:Иллюстрация 4.15 : Photograph of completed force measurement system
 +
:Иллюстрация 4.16 : Photograph of completed angle measurement systems
 +
:Иллюстрация 5.1 : Labeled schematic of a joint
 +
:Иллюстрация 5.2 : Block diagram of the control algorithm
 +
:Иллюстрация 5.3 : ISR schematic
 +
:Иллюстрация 5.4 : Inverse kinematics schematic
 +
:Иллюстрация 6.1 : Desired foot positions for walking motion
 +
:Иллюстрация 6.2 : Sequential video frames of the leg during walking motion
 +
:Иллюстрация 6.3 : Desired and actual x-y foot paths: Test 1
 +
:Иллюстрация 6.4 : Desired and actual joint angles vs. time: Test 1
 +
:Иллюстрация 6.5 : Actuator force vs. time
 +
:Иллюстрация 6.6 : Desired and actual joint stiffness vs. time
 +
:Иллюстрация 6.7 : Joint torque vs. time
 +
:Иллюстрация 6.8 : Ground reaction forces during walking vs. time
 +
:Иллюстрация 6.9 : Trolley motion vs. time
 +
:Иллюстрация 6.10 : Hip joint valve duty cycles vs. time
 +
:Иллюстрация 6.11 : Knee joint valve duty cycles vs. time
 +
:Иллюстрация 6.12 : Desired and actual joint angles vs. time: Test 2
 +
:Иллюстрация 6.13 : Desired and actual x-y foot paths: Kicking motion
 +
:Иллюстрация 6.14 : Desired and actual joint angles vs. time: Kicking motion
 +
:Иллюстрация 6.15 : Calculated angular velocity vs. time
 +
:Иллюстрация 6.14 : Desired and actual joint angles vs. time: Derivative control
 +
:Иллюстрация 7.1 : Desired and actual x-y foot paths: Angle feedback only
  
'''Список иллюстраций'''
+
----
Figure 1.1 : Dimensionless force-length properties of actuators and biological muscles
 
Figure 2.1 : Photograph of inflated and uninflated actuators
 
Figure 2.2 : Actuator dimensions
 
Figure 2.3 : Geometric schematic of actuators
 
Figure 2.4 : Mesh geometry
 
Figure 2.5 : Revised actuator geometry schematic
 
Figure 2.6 : Pressure, Length, Force, Stiffness Relationship for a BPA
 
Figure 2.7 : Static model verification schematic
 
Figure 2.8 : Plot of Force vs. Length for a BPA with constant internal mass of air
 
Figure 2.9 : Pressure Increase vs. Length – constant mass system
 
Figure 2.10 : Plot of Force vs. Length – constant air mass – Exp. vs. Theor. results
 
Figure 2.11 : Plot of Effectiveness vs. Pressure
 
Figure 2.12 : Plot of Force vs. Length – Exp. vs. Theor. Results – (effectiveness)
 
Figure 2.13 : Plot of Force vs. Length – Constant Pressure System
 
Figure 2.14 : Dynamic model schematic
 
Figure 3.1 : Simulation overview schematic
 
Figure 3.2 : Detailed simulation schematic
 
Figure 3.3 : Actuator equation of motion schematic
 
Figure 3.4 : Flow curve for Matrix 758 3-way valve
 
Figure 3.5 : Dynamic model verification schematic
 
Figure 3.6 : Length vs. Time – 60 psi constant mass – 6 lb load - measured
 
Figure 3.7 : Length vs. Time – 60 psi constant mass – 6 lb load - simulation
 
Figure 3.8 : Length vs. Time – 80 psi constant mass – 11 lb load - measured
 
Figure 3.9 : Length vs. Time – 80 psi constant mass – 11 lb load - simulation
 
Figure 3.10 : Length vs. Time – 60 psi constant mass – 11 lb load - measured
 
Figure 3.11 : Length vs. Time – 60 psi constant mass – 11 lb load - simulation
 
Figure 3.12 : PWM valve model verification schematic
 
Figure 3.13 : Commanded vs. Actual duty cycles – Matrix 758 3-way valve
 
Figure 3.14 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - measured
 
Figure 3.15 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - simulation
 
Figure 3.16 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - measured
 
Figure 3.17 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - simulation
 
Figure 3.18 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - measured
 
Figure 3.19 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - simulation
 
Figure 3.20 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - measured
 
Figure 3.21 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - simulation
 
Figure 3.22 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - measured
 
Figure 3.23 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - simulation
 
Figure 4.1 : Robot hardware schematic
 
Figure 4.2 : Photograph of robot
 
Figure 4.3 : CAD model and photograph of robot leg
 
Figure 4.4 : CAD model and photograph of hip translational joint
 
Figure 4.5 : CAD model and photograph of hip rotational joint
 
Figure 4.6 : Schematic of inlet valve
 
Figure 4.7 : Schematic of exhaust valve
 
Figure 4.8 : Current vs. time for inlet valve
 
Figure 4.9 : Current vs. time for exhaust valve
 
Figure 4.10 : Force sensor classic analysis schematic
 
Figure 4.11 : Force sensor FEA results
 
Figure 4.12 : Photograph of force sensors
 
Figure 4.13 : Photograph of strain gage amplifier
 
Figure 4.14 : Transducer calibration plot
 
Figure 4.15 : Photograph of completed force measurement system
 
Figure 4.16 : Photograph of completed angle measurement systems
 
Figure 5.1 : Labeled schematic of a joint
 
Figure 5.2 : Block diagram of the control algorithm
 
Figure 5.3 : ISR schematic
 
Figure 5.4 : Inverse kinematics schematic
 
Figure 6.1 : Desired foot positions for walking motion
 
Figure 6.2 : Sequential video frames of the leg during walking motion
 
Figure 6.3 : Desired and actual x-y foot paths: Test 1
 
Figure 6.4 : Desired and actual joint angles vs. time: Test 1
 
Figure 6.5 : Actuator force vs. time
 
Figure 6.6 : Desired and actual joint stiffness vs. time
 
Figure 6.7 : Joint torque vs. time
 
Figure 6.8 : Ground reaction forces during walking vs. time
 
Figure 6.9 : Trolley motion vs. time
 
Figure 6.10 : Hip joint valve duty cycles vs. time
 
Figure 6.11 : Knee joint valve duty cycles vs. time
 
Figure 6.12 : Desired and actual joint angles vs. time: Test 2
 
Figure 6.13 : Desired and actual x-y foot paths: Kicking motion
 
Figure 6.14 : Desired and actual joint angles vs. time: Kicking motion
 
Figure 6.15 : Calculated angular velocity vs. time
 
Figure 6.14 : Desired and actual joint angles vs. time: Derivative control
 
Figure 7.1 : Desired and actual x-y foot paths: Angle feedback only
 

Версия 16:44, 27 апреля 2009

Оглавление

Благодарности

Аннотация

Глава I. ВВЕДЕНИЕ

1.1 Background
1.2 Purpose and Overview

Chapter II. Braided Pneumatic Actuators

2.1 Physical Characteristics
2.2 Geometric and Static Model
2.3 Static Model Verification
2.4 Dynamic Model

Chapter III. Simulation

3.1 Simulation Overview
3.2 Equations of Motion
3.3 Valve Model
3.4 Dynamic Model Verification

Chapter IV. Robot Hardware

4.1 System Overview
4.2 Leg Design
4.3 Valves
4.4 Force Sensors
4.5 Angle Sensors

Chapter V. Control

5.1 Control Architecture and Control Laws
5.2 Control Program
5.3 Inverse Kinematics

Chapter VI. Results and Discussion

6.1 Desired Walking Behavior
6.2 Tuning
6.3 Walking Results
6.4 Robot Limitations
6.5 Derivative Control

Chapter VII. Conclusion

7.1 It Walks!
7.2 Semi-Observed Speculation
7.3 Future work

Appendix A: Simulation Code

A.1 Actuator.cpp

Appendix B: Controller Code

B.1 Control.cpp
B.2 Def.h
B.3 Hardware.cpp
B.4 Predict.dat
B.5 Gain.dat

Appendix C: Robot Hardware

C.1 Strain Gage Amplifier
C.2 Wiring
C.3 Mechanical Drawings

Bibliography


Список таблиц

Table 4.1 : Transducer sensitivity and error
Table 6.1 : Joint range of motion
Table 6.2 : Time parameters for walking motion
Table 6.3 : Walking motion control gains
Table 6.4 : Passivity and average duty cycles of each valve

Список иллюстраций

Figure 1.1 : Dimensionless force-length properties of actuators and biological muscles
Figure 2.1 : Photograph of inflated and uninflated actuators
Figure 2.2 : Actuator dimensions
Figure 2.3 : Geometric schematic of actuators
Figure 2.4 : Mesh geometry
Figure 2.5 : Revised actuator geometry schematic
Figure 2.6 : Pressure, Length, Force, Stiffness Relationship for a BPA
Figure 2.7 : Static model verification schematic
Figure 2.8 : Plot of Force vs. Length for a BPA with constant internal mass of air
Figure 2.9 : Pressure Increase vs. Length – constant mass system
Figure 2.10 : Plot of Force vs. Length – constant air mass – Exp. vs. Theor. results
Figure 2.11 : Plot of Effectiveness vs. Pressure
Figure 2.12 : Plot of Force vs. Length – Exp. vs. Theor. Results – (effectiveness)
Figure 2.13 : Plot of Force vs. Length – Constant Pressure System
Figure 2.14 : Dynamic model schematic
Figure 3.1 : Simulation overview schematic
Figure 3.2 : Detailed simulation schematic
Figure 3.3 : Actuator equation of motion schematic
Figure 3.4 : Flow curve for Matrix 758 3-way valve
Figure 3.5 : Dynamic model verification schematic
Figure 3.6 : Length vs. Time – 60 psi constant mass – 6 lb load - measured
Figure 3.7 : Length vs. Time – 60 psi constant mass – 6 lb load - simulation
Figure 3.8 : Length vs. Time – 80 psi constant mass – 11 lb load - measured
Figure 3.9 : Length vs. Time – 80 psi constant mass – 11 lb load - simulation
Figure 3.10 : Length vs. Time – 60 psi constant mass – 11 lb load - measured
Figure 3.11 : Length vs. Time – 60 psi constant mass – 11 lb load - simulation
Figure 3.12 : PWM valve model verification schematic
Figure 3.13 : Commanded vs. Actual duty cycles – Matrix 758 3-way valve
Figure 3.14 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - measured
Figure 3.15 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - simulation
Figure 3.16 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - measured
Figure 3.17 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - simulation
Figure 3.18 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - measured
Figure 3.19 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - simulation
Figure 3.20 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - measured
Figure 3.21 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - simulation
Figure 3.22 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - measured
Figure 3.23 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - simulation
Figure 4.1 : Robot hardware schematic
Figure 4.2 : Photograph of robot
Figure 4.3 : CAD model and photograph of robot leg
Figure 4.4 : CAD model and photograph of hip translational joint
Figure 4.5 : CAD model and photograph of hip rotational joint
Figure 4.6 : Schematic of inlet valve
Figure 4.7 : Schematic of exhaust valve
Figure 4.8 : Current vs. time for inlet valve
Figure 4.9 : Current vs. time for exhaust valve
Figure 4.10 : Force sensor classic analysis schematic
Figure 4.11 : Force sensor FEA results
Figure 4.12 : Photograph of force sensors
Figure 4.13 : Photograph of strain gage amplifier
Figure 4.14 : Transducer calibration plot
Figure 4.15 : Photograph of completed force measurement system
Figure 4.16 : Photograph of completed angle measurement systems
Figure 5.1 : Labeled schematic of a joint
Figure 5.2 : Block diagram of the control algorithm
Figure 5.3 : ISR schematic
Figure 5.4 : Inverse kinematics schematic
Figure 6.1 : Desired foot positions for walking motion
Figure 6.2 : Sequential video frames of the leg during walking motion
Figure 6.3 : Desired and actual x-y foot paths: Test 1
Figure 6.4 : Desired and actual joint angles vs. time: Test 1
Figure 6.5 : Actuator force vs. time
Figure 6.6 : Desired and actual joint stiffness vs. time
Figure 6.7 : Joint torque vs. time
Figure 6.8 : Ground reaction forces during walking vs. time
Figure 6.9 : Trolley motion vs. time
Figure 6.10 : Hip joint valve duty cycles vs. time
Figure 6.11 : Knee joint valve duty cycles vs. time
Figure 6.12 : Desired and actual joint angles vs. time: Test 2
Figure 6.13 : Desired and actual x-y foot paths: Kicking motion
Figure 6.14 : Desired and actual joint angles vs. time: Kicking motion
Figure 6.15 : Calculated angular velocity vs. time
Figure 6.14 : Desired and actual joint angles vs. time: Derivative control
Figure 7.1 : Desired and actual x-y foot paths: Angle feedback only

Литература

ПЕРЕВОДИМ (DESIGN AND CONTROL OF A ROBOTIC LEG WITH BRAIDED PNEUMATIC ACTUATORS)

Оглавление

Благодарности

Аннотация

Глава I. ВВЕДЕНИЕ

1.1 Background
1.2 Purpose and Overview

Глава II. Braided Pneumatic Actuators

2.1 Physical Characteristics
2.2 Geometric and Static Model
2.3 Static Model Verification
2.4 Dynamic Model

Глава III. Simulation

3.1 Simulation Overview
3.2 Equations of Motion
3.3 Valve Model
3.4 Dynamic Model Verification

Глава IV. Robot Hardware

4.1 System Overview
4.2 Leg Design
4.3 Valves
4.4 Force Sensors
4.5 Angle Sensors

Глава V. Control

5.1 Control Architecture and Control Laws
5.2 Control Program
5.3 Inverse Kinematics

Глава VI. Results and Discussion

6.1 Desired Walking Behavior
6.2 Tuning
6.3 Walking Results
6.4 Robot Limitations
6.5 Derivative Control

Глава VII. Conclusion

7.1 It Walks!
7.2 Semi-Observed Speculation
7.3 Future work

Приложение A: Simulation Code

A.1 Actuator.cpp

Приложение B: Controller Code

B.1 Control.cpp
B.2 Def.h
B.3 Hardware.cpp
B.4 Predict.dat
B.5 Gain.dat

Приложение C: Robot Hardware

C.1 Strain Gage Amplifier
C.2 Wiring
C.3 Mechanical Drawings

Литература


Список таблиц

Таблица 4.1 : Transducer sensitivity and error
Таблица 6.1 : Joint range of motion
Таблица 6.2 : Time parameters for walking motion
Таблица 6.3 : Walking motion control gains
Таблица 6.4 : Passivity and average duty cycles of each valve

Список иллюстраций

Иллюстрация 1.1 : Dimensionless force-length properties of actuators and biological muscles
Иллюстрация 2.1 : Photograph of inflated and uninflated actuators
Иллюстрация 2.2 : Actuator dimensions
Иллюстрация 2.3 : Geometric schematic of actuators
Иллюстрация 2.4 : Mesh geometry
Иллюстрация 2.5 : Revised actuator geometry schematic
Иллюстрация 2.6 : Pressure, Length, Force, Stiffness Relationship for a BPA
Иллюстрация 2.7 : Static model verification schematic
Иллюстрация 2.8 : Plot of Force vs. Length for a BPA with constant internal mass of air
Иллюстрация 2.9 : Pressure Increase vs. Length – constant mass system
Иллюстрация 2.10 : Plot of Force vs. Length – constant air mass – Exp. vs. Theor. results
Иллюстрация 2.11 : Plot of Effectiveness vs. Pressure
Иллюстрация 2.12 : Plot of Force vs. Length – Exp. vs. Theor. Results – (effectiveness)
Иллюстрация 2.13 : Plot of Force vs. Length – Constant Pressure System
Иллюстрация 2.14 : Dynamic model schematic
Иллюстрация 3.1 : Simulation overview schematic
Иллюстрация 3.2 : Detailed simulation schematic
Иллюстрация 3.3 : Actuator equation of motion schematic
Иллюстрация 3.4 : Flow curve for Matrix 758 3-way valve
Иллюстрация 3.5 : Dynamic model verification schematic
Иллюстрация 3.6 : Length vs. Time – 60 psi constant mass – 6 lb load - measured
Иллюстрация 3.7 : Length vs. Time – 60 psi constant mass – 6 lb load - simulation
Иллюстрация 3.8 : Length vs. Time – 80 psi constant mass – 11 lb load - measured
Иллюстрация 3.9 : Length vs. Time – 80 psi constant mass – 11 lb load - simulation
Иллюстрация 3.10 : Length vs. Time – 60 psi constant mass – 11 lb load - measured
Иллюстрация 3.11 : Length vs. Time – 60 psi constant mass – 11 lb load - simulation
Иллюстрация 3.12 : PWM valve model verification schematic
Иллюстрация 3.13 : Commanded vs. Actual duty cycles – Matrix 758 3-way valve
Иллюстрация 3.14 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - measured
Иллюстрация 3.15 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 5 lb load - simulation
Иллюстрация 3.16 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - measured
Иллюстрация 3.17 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 1 lb load - simulation
Иллюстрация 3.18 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - measured
Иллюстрация 3.19 : Length vs. Time – 100 psi - 25 Hz, 50% PWM – 15 lb load - simulation
Иллюстрация 3.20 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - measured
Иллюстрация 3.21 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 1 lb load - simulation
Иллюстрация 3.22 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - measured
Иллюстрация 3.23 : Length vs. Time – 100 psi - 50 Hz, 50% PWM – 5 lb load - simulation
Иллюстрация 4.1 : Robot hardware schematic
Иллюстрация 4.2 : Photograph of robot
Иллюстрация 4.3 : CAD model and photograph of robot leg
Иллюстрация 4.4 : CAD model and photograph of hip translational joint
Иллюстрация 4.5 : CAD model and photograph of hip rotational joint
Иллюстрация 4.6 : Schematic of inlet valve
Иллюстрация 4.7 : Schematic of exhaust valve
Иллюстрация 4.8 : Current vs. time for inlet valve
Иллюстрация 4.9 : Current vs. time for exhaust valve
Иллюстрация 4.10 : Force sensor classic analysis schematic
Иллюстрация 4.11 : Force sensor FEA results
Иллюстрация 4.12 : Photograph of force sensors
Иллюстрация 4.13 : Photograph of strain gage amplifier
Иллюстрация 4.14 : Transducer calibration plot
Иллюстрация 4.15 : Photograph of completed force measurement system
Иллюстрация 4.16 : Photograph of completed angle measurement systems
Иллюстрация 5.1 : Labeled schematic of a joint
Иллюстрация 5.2 : Block diagram of the control algorithm
Иллюстрация 5.3 : ISR schematic
Иллюстрация 5.4 : Inverse kinematics schematic
Иллюстрация 6.1 : Desired foot positions for walking motion
Иллюстрация 6.2 : Sequential video frames of the leg during walking motion
Иллюстрация 6.3 : Desired and actual x-y foot paths: Test 1
Иллюстрация 6.4 : Desired and actual joint angles vs. time: Test 1
Иллюстрация 6.5 : Actuator force vs. time
Иллюстрация 6.6 : Desired and actual joint stiffness vs. time
Иллюстрация 6.7 : Joint torque vs. time
Иллюстрация 6.8 : Ground reaction forces during walking vs. time
Иллюстрация 6.9 : Trolley motion vs. time
Иллюстрация 6.10 : Hip joint valve duty cycles vs. time
Иллюстрация 6.11 : Knee joint valve duty cycles vs. time
Иллюстрация 6.12 : Desired and actual joint angles vs. time: Test 2
Иллюстрация 6.13 : Desired and actual x-y foot paths: Kicking motion
Иллюстрация 6.14 : Desired and actual joint angles vs. time: Kicking motion
Иллюстрация 6.15 : Calculated angular velocity vs. time
Иллюстрация 6.14 : Desired and actual joint angles vs. time: Derivative control
Иллюстрация 7.1 : Desired and actual x-y foot paths: Angle feedback only